Gruber I Neumann

Erfolg im Mathe-Abi 2024

Übungsbuch für Teil B im Leistungsfach Mathematik Baden-Württemberg mit Tipps und Lösungen

Inhaltsverzeichnis

Analysis		6
1	Hefe	6
2	Wassertemperatur	9
3	Regen	11
4	Straße	13
5	Medikament	15
6	Virus	17
7	Lufttemperatur	19
Geometrie		21
8	Kiste	21
9	Geradenschar	22
10	Flugzeug	23
11	Pyramide	24
12	Platte	25
13	Rampe	26
14	Ebenenschar	27
15	Lichtstrahl	28
Sto	ochastik	30
16	Bildschirm	30
17	Weizen	32
18	Bleistifte	33
19	Hundefutter	34
20	Flugbuchung	36
21	Eier	38
Tij	pps	39
Lö	sungen	62
Ab	oituraufgaben 2021	153
Ab	oituraufgaben 2022	197
Ab	oituraufgaben 2023	240
Sti	ichwortverzeichnis	288

Vorwort

Erfolg von Anfang an

... ist das Geheimnis eines guten Abiturs. Das vorliegende Übungsbuch ist speziell auf die Anforderungen des Aufgabenteils B des Mathematik-Abiturs des Leistungsfachs in Baden-Württemberg ab 2024 abgestimmt. Es umfasst die drei großen Themenbereiche Analysis, Analytische Geometrie und Stochastik sowie angepasste Abituraufgaben seit 2021 in einem Buch. Insgesamt gibt es 90 Berechnungseinheiten (BE). In Analysis gibt es eine sehr umfangreiche Aufgabe mit 40 BE, in der Analytischen Geometrie und in Stochastik gibt es jeweils eine Aufgabe mit 25 BE.

Pro Jahrgang gibt es zwei Aufgaben aus der Analysis (A1 und A2), zwei Aufgaben aus der Analytischen Geometrie (B1 und B2) sowie zwei Aufgaben aus der Stochastik (C1 und C2).

Der Aufgabenteil B besteht aus komplexeren Aufgaben, die mithilfe eines wissenschaftlichen Taschenrechners (WTR) und eines Formeldokuments gelöst werden sollen. Der Schwerpunkt liegt auf der Analysis. Thematisch geht es meist um anwendungsbezogene Transferaufgaben, um das Modellieren realitätsnaher Aufgabenstellungen, um das Herstellen von Zusammenhängen und um das Entwickeln von Lösungsstrategien.

Bei einigen Aufgaben ist es nötig, den Taschenrechner zu benutzen. Nicht bei allen Rechnerfunktionen ist gleich klar, wie sie aufgerufen werden. Daher befinden sich im Buch QR-Codes für die entsprechenden Videos, in denen die Funktionen des Tachenrechners kurz erklärt werden. Der QR-Code kann mit einer entsprechenden App gescannt werden. Alternativ lässt sich auch der Link unter dem Code benutzen.

Der Code neben diesem Text verweist z.B. auf ein Video zum Erstellen einer Wertetabelle.

Der blaue Tippteil

Hat man einmal keine Idee, wie man eine Aufgabe angehen soll bzw. fehlt der Lösungsansatz, hilft der blaue Tippteil in der Mitte des Buches weiter: Zu jeder Aufgabe gibt es dort Tipps, die helfen, einen Ansatz zu finden, ohne die Lösung vorwegzunehmen.

Die Kontrollkästchen

Damit Sie immer den Überblick behalten können, welche Aufgaben Sie schon bearbeitet haben, befindet sich neben jedem Aufgabentitel ein Kontrollkästchen zum Abhaken.

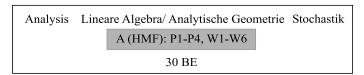
Allen Schülerinnen und Schülern, die sich auf das Abitur vorbereiten, wünschen wir viel Erfolg! Helmut Gruber, Robert Neumann

Der Aufbau der Mathematikprüfung

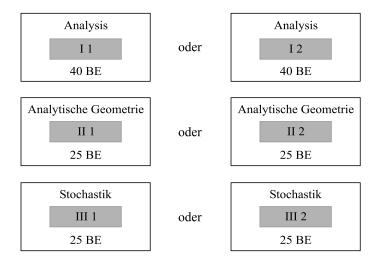
- Die gesamte Prüfungszeit beträgt 300 Minuten (5 Zeitstunden).
- Die Lehrerin/ der Lehrer erhält vor der Prüfung den Aufgabenteil A und für den Aufgabenteil B zwei Aufgabenvorschläge aus Analysis (A1 und A2), zwei aus Analytischer Geometrie (B1 und B2) sowie zwei aus Stochastik (C1 und C2). Die Lehrerin/ der Lehrer wählt aus den Vorschlägen für den Aufgabenteil B je einen aus Analysis, einen aus Analytischer Geometrie und einen aus Stochastik aus.
- Die Schülerinnen und Schüler erhalten zu Beginn der Prüfung alle Aufgaben (den Aufgabenteil A und den vom Lehrer/ der Lehrerin ausgesuchten Aufgabenteil B, bestehend aus je einer Aufgabe aus den Gebieten Analysis, Geometrie und Stochastik). Sie erhalten zu diesem Zeitpunkt noch keine Hilfsmittel.
- Die Schülerinnen und Schüler bearbeiten zunächst den Aufgabenteil A. Nach dessen Abgabe (spätestens nach 100 Minuten) erhalten sie die Hilfsmittel (Taschenrechner, Formeldokument) für den Aufgabenteil B.

Insgesamt können maximal 120 Bewertungseinheiten in der Prüfung erreicht werden, davon 30 im Aufgabenteil A und 90 im Aufgabenteil B.

Aufgabenteil A (hilfsmittelfrei, maximal 100 Minuten)



Aufgabenteil B



Geometrie

8 Kiste

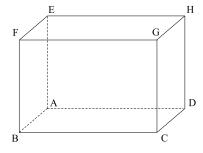
Tipps ab Seite 49, Lösungen ab Seite 101

Eine quaderförmige Kiste ist in einem Koordinatensystem durch die Eckpunkte A $(0 \mid 0 \mid 0)$, B $(3 \mid 0 \mid 0)$, D $(0 \mid 5 \mid 0)$ und F $(3 \mid 0 \mid 4)$ festgelegt.

Die Fläche EFGH stellt den Deckel der geschlossenen Kiste dar.

Dieser ist drehbar um die Kante \overline{EH} . Weiterhin ist für jedes $t \geqslant 0$ eine Ebene E_t gegeben durch die Gleichung

 E_t : $tx_1 - x_3 + 4 = 0$.



(Skizze nicht maßstabsgerecht)

- a) Berechnen Sie den Abstand zwischen den Kanten AB und GH.
 Zeigen Sie, dass die Gerade durch E und H in jeder Ebene Et liegt.
 Bestimmen Sie die Gleichung derjenigen Ebene Et, in welcher der Deckel bei geschlossener Kiste liegt.
 - Prüfen Sie, ob der Deckel in einer Ebene E_t liegt, wenn er um 90° geöffnet ist.
- b) Wenn der Deckel der geöffneten Kiste in E_2 liegt, wird er durch einen Stab orthogonal zum Deckel abgestützt. Dieser Stab ist in der Mitte der Kante \overline{EF} befestigt und trifft im Punkt P auf den Deckel.
 - Berechnen Sie die Koordinaten von P.
- c) Berechnen Sie den Öffnungswinkel, wenn der Deckel in E₂ liegt.
 Bestimmen Sie die Gleichung der Ebene E_t, in welcher der Deckel liegt, wenn der Öffnungswinkel 60° beträgt.
 ...

Bestimmen Sie den Parameter t in Abhängigkeit vom Öffnungswinkel α für $\alpha < 90^{\circ}$.

9. Geradenschar **Tipps**

8 **Kiste**

a) Bestimmen Sie die Koordinaten der übrigen Eckpunkte der Kiste.

Den Abstand zwischen den Kanten AB und GH erhalten Sie, indem Sie zum Beispiel die Entfernung der Punkte A und H berechnen.

Stellen Sie die Gleichung der Geraden g durch E und H auf und setzen Sie diese in die Ebenengleichung E_t ein. Bei einer wahren Aussage liegt die Gerade in E_t .

Setzen Sie die Koordinaten von F in E_t ein und lösen Sie die Gleichung nach t auf, um diejenige Ebene E_t zu bestimmen, in welcher der Deckel bei geschlossener Kiste liegt.

Beim Öffnen des Deckels um 90° geht der Punkt F in einen Punkt F über. Bestimmen Sie den Punkt \overline{F} und setzen Sie die Koordinaten von \overline{F} in E_t ein. Bei einem Widerspruch liegt der Deckel nicht in einer Ebene E_t.

b) Setzen Sie t = 2 in E_t ein.

Bestimmen Sie die Koordinaten des Mittelpunkts M_{EF} der Kante \overline{EF} .

Stellen Sie eine Lotgerade l durch M_{EF} orthogonal zu E_2 auf (der Richtungsvektor von list der Normalenvektor von E₂).

Sie erhalten die Koordinaten von P, indem Sie l und E_2 schneiden.

c) Um den Öffnungswinkel α zu bestimmen, setzen Sie einen Normalenvektor $\overrightarrow{n_2}$ von E_2 und einen Normalenvektor $\overrightarrow{n_1}$ der Ebene EFGH, die parallel zur x_1x_2 -Ebene ist, in folgende

Formel ein:
$$\cos(\alpha) = \frac{|\overrightarrow{n_1} \circ \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$$

Um diejenige Ebene E_t zu bestimmen, in welcher der Deckel bei einem Öffnungswinkel von 60° liegt, setzen Sie einen Normalenvektor $\overrightarrow{n_t}$ von E_t , einen Normalenvektor $\overrightarrow{n_1}$ der

Ebene EFGH und $\alpha = 60^{\circ}$ in die Formel $\cos(\alpha) = \frac{|\overrightarrow{n_1} \circ \overrightarrow{n_l}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_l}|}$ ein und lösen die erhaltene

Gleichung durch Quadrieren nach t auf.

Lösen Sie allgemein die Gleichung $\cos(\alpha) = \frac{|\overrightarrow{n_1} \circ \overrightarrow{n_t}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_t}|}$ durch Quadrieren nach t auf, um

den Parameter t in Abhängigkeit vom Öffnungswinkel angeben zu können.

Geradenschar 9

a) Setzen Sie a = 4 in die Gleichung der Geradenschar ein, um die Gleichung von g_4 zu erhalten.

Den Schnittpunkt S der Geraden g₄ mit der Ebene E erhalten Sie, indem Sie den allgemeinen Punkt P $_{\lambda}$ von g_4 in die Ebenengleichung einsetzen und die Gleichung nach λ auflösen. Setzen Sie den erhaltenen λ -Wert in P_{λ} ein.

Beachten Sie, dass die Gerade g_a parallel zu E ist, wenn der Richtungsvektor von g_a orthogonal zum Normalenvektor von E ist, d.h. wenn das Skalarprodukt dieser beiden Vektoren Null ergibt. Lösen Sie die entsprechende Gleichung nach a auf.

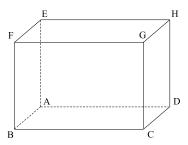
Beachten Sie, dass eine Gerade g_a der Schar orthogonal zu g_4 ist, wenn der Richtungsvektor $\overrightarrow{u_a}$ orthogonal zum Richtungsvektor $\overrightarrow{u_4}$ von g_4 ist, d.h. das Skalarprodukt dieser beiden Vektoren Null ergibt. Lösen Sie die entsprechende Gleichung nach a auf.

Lösungen 8. Kiste

Geometrie

8 Kiste

a)



Die Koordinaten der Eckpunkte der Kiste sind A(0 | 0 | 0), B(3 | 0 | 0), C(3 | 5 | 0), D(0 | 5 | 0), E(0 | 0 | 4), F(3 | 0 | 4), G(3 | 5 | 4) und H(0 | 5 | 4).

Den Abstand zwischen den Kanten \overline{AB} und \overline{GH} erhält man, indem man die Entfernung der Punkte A und H berechnet, da die Kiste quaderförmig ist:

$$|\overrightarrow{AH}| = \begin{vmatrix} 0 \\ 5 \\ 4 \end{vmatrix} = \sqrt{0^2 + 5^2 + 4^2} = \sqrt{41} \approx 6.4$$

Der Abstand der Kanten AB und GH beträgt etwa 6,4LE.

Um zu zeigen, dass die Gerade g durch E und H in jeder Ebene E_t : $tx_1 - x_3 + 4 = 0$ liegt, stellt man die Geradengleichung von g auf und setzt sie in E_t ein. Man erhält:

$$g: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \lambda \in \mathbb{R}$$

Einsetzen von g in E_t ergibt: $t \cdot 0 - (4 + \lambda \cdot 0) + 4 = 0$ bzw. 0 = 0.

Aufgrund der wahren Aussage liegt die Gerade g in jeder der Ebenen E_t.

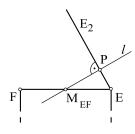
Bei geschlossener Kiste liegt der Punkt $F(3 \mid 0 \mid 4)$ auf dem Deckel. Setzt man die Koordinaten von F in E_t ein, so erhält man: $t \cdot 3 - 4 + 4 = 0 \Rightarrow t = 0$.

Somit liegt der Deckel bei geschlossener Kiste in der Ebene E_0 : $-x_3 + 4 = 0$.

Wird der Deckel um 90° geöffnet, so geht der Eckpunkt F des geschlossenen Deckels in den Eckpunkt $\overline{F}(0 \mid 0 \mid 7)$ über.

Setzt man die Koordinaten von \overline{F} in E_t ein, so erhält man: $t \cdot 0 - 7 + 4 = 0 \Rightarrow -3 = 0$. Aufgrund des Widerspruchs liegt der um 90° geöffnete Deckel in keiner der Ebenen E_t . 8. Kiste Lösungen

b)



Der Punkt P ist der Schnittpunkt der Lotgeraden l und der Ebene E_2 .

Diese hat die Gleichung E_2 : $2x_1 - x_3 + 4 = 0$. Der Mittelpunkt der Kante \overline{EF} hat die Koordinaten $M_{EF}(1,5 \mid 0 \mid 4)$. Die Lotgerade l geht durch den Punkt M_{EF} und ist orthogonal zu E_2 , der Richtungsvektor von l ist somit der Normalenvektor von E_2 :

$$l \colon \vec{x} = \begin{pmatrix} 1,5 \\ 0 \\ 4 \end{pmatrix} + \mu \cdot \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}; \mu \in \mathbb{R}$$

Schneidet man l mit E_2 , so ergibt sich: $2 \cdot (1,5+2\mu) - (4-\mu) + 4 = 0 \Rightarrow \mu = -0,6$. Setzt man $\mu = -0,6$ in l ein, so erhält man den gesuchten Punkt $P(0,3 \mid 0 \mid 4,6)$, in welchem der Stützstab auf den Deckel trifft.

c) Um den Öffnungswinkel α zu bestimmen, wenn der Deckel in E_2 liegt, berechnet man den Winkel zwischen dem Normalenvektor $\overrightarrow{n_2} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$ von E_2 und dem Normalenvektor $\overrightarrow{n_1} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ der Ebene EFGH. Man erhält:

$$\cos(\alpha) = \frac{|\overrightarrow{n_1} \circ \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{\begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \circ \begin{pmatrix} 2 \\ 0 \\ -1 \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} 0 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ 0 \\ 1 \end{vmatrix}} = \frac{|-1|}{\sqrt{1} \cdot \sqrt{5}} = \frac{1}{\sqrt{5}} \Rightarrow \alpha \approx 63.4^{\circ}$$

Wenn der Deckel in E₂ liegt, beträgt der Öffnungswinkel etwa 63,4°.

Bei einem Öffnungswinkel von $\alpha = 60^{\circ}$ erhält man:

$$\cos(60^{\circ}) = \frac{|\overrightarrow{n_1} \circ \overrightarrow{n_t}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_t}|} = \frac{\begin{vmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \circ \begin{pmatrix} t \\ 0 \\ -1 \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} t \\ 0 \\ -1 \end{vmatrix}} = \frac{|-1|}{\sqrt{1} \cdot \sqrt{t^2 + (-1)^2}} = \frac{1}{\sqrt{t^2 + 1}}$$

Da $cos(60^\circ) = \frac{1}{2}$ ist, gilt:

$$\frac{1}{2} = \frac{1}{\sqrt{t^2 + 1}} \Rightarrow \sqrt{t^2 + 1} = 2$$

Lösungen 8. Kiste

Daraus folgt:

$$t^2 + 1 = 4 \Rightarrow t = +\sqrt{3}$$

Dies ist einzige Lösung wegen $t \ge 0$.

Somit liegt der um 60° geöffnete Deckel in der Ebene $E_{\sqrt{3}}$: $\sqrt{3}x_1 - x_3 = -4$.

Um den Parameter t in Abhängigkeit vom Öffnungswinkel α zu bestimmen, löst man die Gleichung

$$\cos(\alpha) = \frac{|\overrightarrow{n_1} \circ \overrightarrow{n_t}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_t}|} = \frac{1}{\sqrt{t^2 + 1}}$$

nach t auf. Wegen $\alpha < 90^{\circ}$ ist $\cos(\alpha) \neq 0$ und man erhält:

$$\frac{1}{\sqrt{t^2+1}} = \cos(\alpha)$$

$$\frac{1}{\cos(\alpha)} = \sqrt{t^2+1}$$

$$\frac{1}{(\cos(\alpha))^2} = t^2+1$$

$$\frac{1}{(\cos(\alpha))^2} - 1 = t^2$$

$$t_{1,2} = \pm \sqrt{\frac{1}{(\cos(\alpha))^2} - 1}$$

Wegen
$$t \ge 0$$
 ist $t = \sqrt{\frac{1}{(\cos \alpha)^2} - 1}$ die einzige Lösung.

Stichwortverzeichnis

Änderungsrate, 199

Abenteuerspielplatz, 153

Abflussrate, 200

Änderungsrate, 16, 17

Baumdiagramm, 32

Binomialkoeffizient, 30

Erkrankungsrate, 17

Erwärmungsgeschwindigkeit, 9

Fußpunkt, 26

Funktionenscharen

Exponentialfunktionen, 6, 14, 20

ganzrationale Funktionen, 156

trigonometrische Funktionen, 10, 12

Geradenschar, 22, 204

Gewächshaus, 159

Glücksrad, 207

Hypothesentest, 162

Interpretation von Schaubildern, 13

knickfreier Übergang, 13, 153

Kreuzprodukt, 48

Neigungswinkel, 22

Niederschlagsrate, 12

Normalverteilung, 32, 36, 38, 160, 205

Öffnungswinkel, 21

Pfadregeln, 32

Prisma, 25

Pyramide, 22, 24, 158, 202

Schatten, 24, 25

Spiegelung, 197

Tanzpaare, 162

Temperaturverlauf, 19

Vektorprodukt, 48

Volumenberechnung, 24

Wachstum

beschränktes, 9

exponentielles, 6

Wachstumsgeschwindigkeit, 155

Wasserabflussrate, 12

Wendepunkt, 197

Winkel, 22-25, 27, 197

Winkelberechnung

zwischen Ebenen, 22, 24

Wirkstoffmenge, 15