Rosner

Mathe gut erklärt Abitur 2020

Baden-Württemberg Allgemeinbildende Gymnasien

6. Auflage

Stefan Rosner, geb. 1979, studierte Mathematik in Mannheim und unterrichtet seit 2005 in der Oberstufe.

PEFC zertifiziert

Dieses Produkt stammt aus nachhaltig bewirtschafteten Wäldern und kontrollierten Quellen.

www.pefc.de

©2019 Freiburger Verlag GmbH, Freiburg im Breisgau 6. Auflage. Alle Rechte vorbehalten Gedruckt in Deutschland www.freiburger-verlag.de

Inhaltsverzeichnis

I.	Grundlagen Analysis	7
1	Funktionen	8
1.1	Ganzrationale Funktionen (Polynome)	8
1.2	Der Nullstellenansatz und die Vielfachheit von Nullstellen	10
1.3	Gebrochenrationale Funktionen	12
1.4	Exponentialfunktionen	14
1.5	Trigonometrische Funktionen	16
1.6	Übersicht: Spiegeln, Strecken und Verschieben	18
1.7	Funktionenscharen	20
1.8	Symmetrie zur y-Achse bzw. zum Ursprung	22
1.9	Umgang mit Funktionen: Rechenansätze	23
2	Gleichungen	24
2.1	Gleichungstypen: Übersicht	24
2.2	Gleichungstypen: Konkretes Lösungsvorgehen	26
2.3	Goldene Regeln zum Lösen von Gleichungen	32
2.4	Lineare Gleichungssysteme	34
2.5	Ungleichungen	36
3	Differenzialrechnung	38
3.1	Ableitungsregeln	38
3.2	Tangente und Normale	11
3.3	Schnittpunkte (Berührpunkt, senkrechter Schnitt, Schnittwinkel)	14
3.4	Monotonie	16
3.5	Krümmung	17
3.6	Extrempunkte (Hoch- und Tiefpunkte)	18
3.7	Wendepunkte	19
3.8	Sattelpunkte	50
3.9	Ortskurve	54
3.10	Zusammenhang zwischen den Schaubildern von Funktion und Ableitung 5	56
3.11	Ermittlung von Funktionsgleichungen	58
3.12		50
3.13	Wachstum und Zerfall	52
4		54
4.1	Integrationsregeln ("Aufleitungsregeln")	54
4.2	Flächeninhaltsberechnung zwischen Schaubild und x-Achse	58
4.3	Flächeninhaltsberechnung zwischen zwei Schaubildern	70
4.4	Mittelwert (durchschnittlicher y-Wert) einer Funktion	74
4.5	Flächen, die bis ins Unendliche reichen (Uneigentliche Integrale)	75
4.6	Zusatz: Wichtiges für Anwendungsorientierte Aufgaben	76

II.	Grundlagen Vektorgeometrie
1	Vorwissen
1.1	Punkte (im \mathbb{R}^3)
1.2	Vektoren (im \mathbb{R}^3)
1.3	Rechnen mit Vektoren (Addition, Subtraktion, Betrag, Skalare Multiplikation,
	Linearkombination, Lineare Abhängigkeit und Unabhängigkeit, Skalarprodukt,
	Vektorprodukt)
2	Geraden
2.1	Geradengleichungen in Parameterform
2.2	Gegenseitige Lage von Geraden
3	Ebenen
3.1	Ebenengleichungen in Parameterform
3.2	Ebenengleichungen in Normalenform
3.3	Ebenengleichungen in Koordinatenform
3.4	Spurpunkte, Spurgeraden und die Lage im Koordinatensystem 95
3.5	Umwandlungen der Ebenenformen
4	Gegenseitige Lage
4.1	Ebene-Gerade
4.2	Ebene-Ebene
5	Schnittwinkel
6	Abstandsberechnungen
6.1	Abstände zu einem Punkt
6.2	Abstände zu einer Geraden
6.3	Abstände zu einer Ebene
7	Zusatz: Bewegungsaufgaben (Modellieren mit Vektoren)
8	Spiegelungen
III.	Grundlagen Stochastik
1	Baumdiagramm, Pfadregeln und Erwartungswert
1.1	Einführung
1.2	Aufgabentypen
1.3	Zufallsvariable und Erwartungswert
2	Binomialverteilung
2.1	Bernoulliformel
2.2	Binomialverteilung und kumulierte Binomialverteilung
2.3	Aufgabentypen
2.4	Erwartungswert

3	Der einseitige Hypothesentest											138
3.1	Ausführliche Erklärung											138
3.2	Vorgehen und Beispiele											139
3.3	Fehler 1. Art											142

Vorwort

Liebe Schülerinnen und Schüler.

dieses Buch und die Videos sollen Sie dabei unterstützen,

- sich in den letzten beiden Schuljahren optimal auf Klausuren und auf das Abitur in Mathematik vorzubereiten.
- sich alle Lehrplaninhalte anhand verständlicher und übersichtlicher Stoffzusammenfassungen anzueignen.
- die Abitursaufgaben der vergangenen Jahrgänge zu bearbeiten, da Sie hiermit ein Nachschlagewerk zur Verfügung haben.
- durch Erfolge neue Motivation für das Fach Mathematik zu bekommen.

Liebe Fachkolleginnen und Fachkollegen,

dieses Buch und die Videos sollen Sie dabei unterstützen.

- die zeitintensive Stoffwiederholung, Klausur- und Abiturvorbereitung teilweise aus dem Unterricht auslagern zu können.
- auf diese Weise mehr Zeit für verständnisorientierten Unterricht zu gewinnen.
- sicherzustellen, dass Ihre Schülerinnen und Schüler über ausreichendes Basiswissen verfügen.

NEU

Über 80 Videos des Autors, in welchen alle Stoffzusammenfassungen nochmals erklärt werden. Zugriff über Kurzadresse oder QR-Code aus dem Buch.

1. Funktionen

1.1 Ganzrationale Funktionen (Polynome)

1. Grades (Geraden)

Hauptform: y = mx + b

Vorgehen zum Einzeichnen:

$$y = \frac{hoch / runter}{rechts} \cdot x + y-Achsen - abschnitt$$

Steigung aus 2 Punkten: $m = \frac{y_2 - y_1}{x_2 - x_1}$

Steigungswinkel aus Steigung bestimmen: $m = \tan(\alpha)$

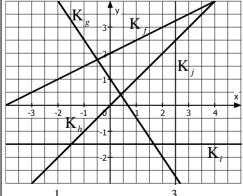
Parallele Geraden:

 $m_1 = m_2$ (gleiche Steigung)

Senkrechte (orthogonale) Geraden: Steigungen sind negative Kehrwerte

voneinander: $m_2 = -\frac{1}{m_1}$ bzw. $m_1 \cdot m_2 = -1$

- 1. Winkelhalbierende: $y = x \quad (m = 1)$
- 2. Winkelhalbierende: y = -x (m = -1)



$$K_f$$
: $y = \frac{1}{2}x + 2$

$$K_g: y = -\frac{3}{2}x + 1$$

 K_h : y = x (1. Winkelhalbierende)

$$K_i: y = -1,5$$
 $K_i: x = 2,5$

$$K_i$$
: $x = 2,5$

2. Grades (Parabeln)

Allg.: $f(x) = ax^2 + bx + c$

Scheitelpunkt-Ansatz:

$$f(x) = a \cdot (x - x_s)^2 + y_s \text{ mit } S(x_s \mid y_s)$$

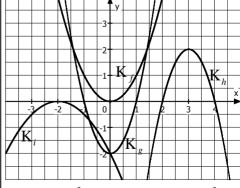
a > 0: nach oben geöffnet bzw. Verlauf von II nach I

a < 0: nach unten geöffnet bzw. Verlauf von III nach IV

Schnittpunkt mit y-Achse: $S_y(0|c)$

Bei Symmetrie zur y-Achse:

$$f(x) = ax^2 + c$$
 (nur gerade Hochzahlen)



$$K_{f}$$
: $f(x) = x^{2}$

$$K_g: g(x) = 2x^2 - 2$$

$$K_h: h(x) = -2(x-3)^2 + 2$$

$$K_i: i(x) = -0.5x^2 - 2x - 2$$

3. Grades

4. Grades

Allg.:
$$f(x) = ax^3 + bx^2 + cx + d$$

Allg.: $f(x) = ax^4 + bx^3 + cx^2 + dx + e$

a > 0: Verlauf von III nach I

a > 0: Verlauf von II nach I

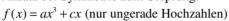
a < 0: Verlauf von II nach IV

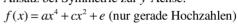
a < 0: Verlauf von III nach IV

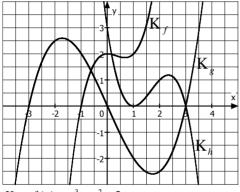
Schnittpunkt mit y-Achse: $S_{y}(0|d)$

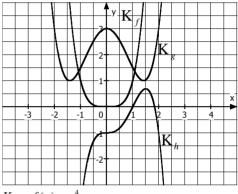
Schnittpunkt mit y-Achse: $S_v(0|e)$

Ansatz bei Symmetrie zum Ursprung:









 $K_f: f(x) = x^3 - x^2 + 2$

 $\mathbf{K}_f: f(x) = x^{4}$

 $K_g: g(x) = \frac{1}{4}x^3 - \frac{9}{4}x$

 $K_g: g(x) = 0,5x^4 - 2x^2 + 3$

 $K_h: h(x) = -x^3 + 5x^2 - 7x + 3$

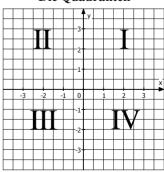
 $\mathbf{K}_h: \ h(x) = -x^4 + 2x^3 - 1$

Tipp (für alle ganzrationalen Funktionen)

a > 0: Verlauf von ... nach I ("endet oben")

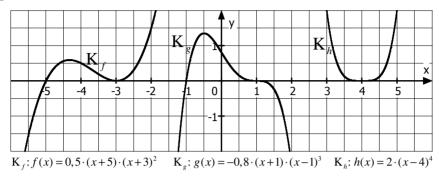
a < 0: Verlauf von ... nach IV ("endet unten")

Die Quadranten



1.2 Der Nullstellenansatz und die Vielfachheit von Nullstellen

Beispiele



Aufbau des Nullstellenansatzes (am Beispiel)

$$g(x) = -0.8 \cdot (x+1) \cdot (x-1)^{3}$$
Verlauf
$$x_{0} = -1$$
von III
ist einfache
nach IV
Nullstelle
Nullstelle

Übersicht (für ganzrationale Funktionen)

Vielfachheit Nullstelle	Faktor im Nullstellenansatz	Skizze	Beschreibung
Einfache Nullstelle:	$f(x) = \dots \cdot (x - x_0) \cdot \dots$	× × ×	Schaubild schneidet x-Achse (mit Vorzeichenwechsel VZW)
Doppelte Nullstelle: x ₀	$f(x) = \dots \cdot (x - x_0)^2 \cdot \dots$	y ×	Schaubild berührt x-Achse (ohne VZW)
Dreifache Nullstelle:	$f(x) = \dots \cdot (x - x_0)^3 \cdot \dots$	x ₀	Schaubild schneidet und berührt <i>x</i> -Achse (mit VZW)
Vierfache Nullstelle:	$f(x) = \dots \cdot (x - x_0)^4 \cdot \dots$	X ₀	Schaubild berührt x-Achse (ohne VZW) ("breiter" geformt als doppelte Nullstelle)

Beispiel

Gesucht ist der Funktionsterm zum nebenstehenden Schaubild.

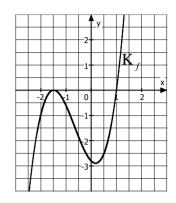
Lösung

Da die Nullstellen $(x_{1/2} = -1,5; x_3 = 1)$ des Schaubildes ablesbar sind, kann der Nullstellenansatz der Funktion weitgehend aufgestellt werden:

$$f(x) = a \cdot (x+1,5)^2 \cdot (x-1)$$

Dann werden die Koordinaten eines weiteren Punktes, der kein Schnittpunkt mit der *x*-Achse ist, eingesetzt:

P(0,5|-2,5):
$$f(x) = a \cdot (x+1,5)^{2} \cdot (x-1)$$
$$-2,5 = a \cdot (0,5+1,5)^{2} \cdot (0,5-1)$$
$$-2,5 = -2a$$
$$\frac{5}{4} = a$$
$$\Rightarrow f(x) = \frac{5}{4} \cdot (x+1,5)^{2} \cdot (x-1)$$



1.3 Gebrochenrationale Funktionen

Allg.
$$f(x) = \frac{(ganzrationale) Funktion}{(ganzrationale) Funktion}$$
 Beispiel: $f(x) = \frac{-2x^2 + 3x}{x + 2}$ (mit $D = \mathbb{R} \setminus \{-2\}$)

1. Untersuchung auf senkrechte Asymptoten

x-Werte, die im **Nenner** zum **Wert 0** führen, nennt man **Definitionslücken**. Solche *x*-Werte sind nicht in der Definitionsmenge der Funktion enthalten.

An einer Definitionslücke kann das Schaubild eine **senkrechte Asymptote** aufweisen. (Hinweis: Asymptote = Näherungsgerade)

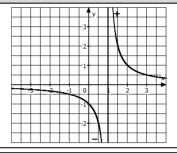
Fall 1: Polstelle mit Vorzeichenwechel (einfache Nullstelle des Nenners)

Beispiel: $f(x) = \frac{1}{x-1} \pmod{D} = \mathbb{R} \setminus \{1\}$

Senkrechte Asymptote: x = 1

Für $x \to 1$ (x < 1) gilt: $f(x) \to -\infty$

Für $x \to 1$ (x > 1) gilt: $f(x) \to +\infty$



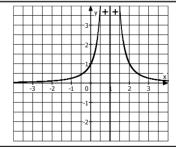
Fall 2: Polstelle ohne Vorzeichenwechel (doppelte Nullstelle des Nenners)

Beispiel: $f(x) = \frac{1}{(x-1)^2} \left(\text{mit D} = \mathbb{R} \setminus \{1\} \right)$

Senkrechte Asymptote: x = 1

Für $x \to 1$ (x < 1) gilt: $f(x) \to +\infty$

Für $x \to 1$ (x > 1) gilt: $f(x) \to +\infty$



Hinweise

- x-Werte, für die der **Nenner** gleich **0** ist sind **Definitionslücken** $\left(\frac{...}{0} = ?\right)$
- x-Werte, für die der **Zähler** gleich **0** ist sind **Nullstellen** $\left(\frac{0}{\dots} = 0\right)$